

MARCH 23, 2021

Decision Making for Lowering Embodied Carbon

Scott Schneider, P.E., LEED AP Pawel Woelke, Ph.D., P.E. ARPA-E

Carbon Negative Building Materials Workshop

Thornton Tomasetti

AGENDA

- 1. A Little About Us
- 2. How We See The Problem
- 3. What Can Structural Engineers Do How We Make Decisions
- 4. Current Strategies to Reduce Embodied Carbon
- 5. What's Next?

A LITTLE ABOUT US

Scott Schneider, P.E., LEED AP Principal

120 Broadway New York, NY 10271

Pawel Woelke, Ph.D., P.E. Principal

120 Broadway New York, NY 10271

ENGINEERING SOLUTIONS

Acoustics, Noise & Vibration

Aviation

Commercial & Residential

Construction Engineering

Critical Facilities

Cultural & Community

Defense

Education

Energy

Facades

Forensics & Investigations

Government

Healthcare & Research

Hospitality & Gaming

Insurance

Life Sciences

Protective Design & Security

Resilience

Restoration & Renewal

Special Structures

Sports & Public Assembly

- Structural Design
- Sustainability

Tall & Supertall Buildings

Transportation/Infrastructure

HOW WE SEE THE PROBLEM

 Human activities are estimated to have caused ~1.0 °C of global warming.

- Global warming is likely to reach 1.5°C (a critical threshold) between 2030 and 2050.
- We need to tackle climate change within the next 10 years or face major consequences by 2040.

Source: IPCC 2013, Representative Concentration Pathways (RCP); Stockholm Environment Institute (SEI), 2013; Climate Analytics and ECOFYS, 2014.

Note: Emissions peaks are for fossil fuel CO2-only emissions.

HOW WE SEE THE PROBLEM

Global CO₂ Emissions by Sector

WHERE IS THE CARBON?

WHAT CAN STRUCTURAL ENGINEERS DO?

How We Make Decisions

- Safety and Comfort strength and stiffness requirements
- High load capacity-to-volume ratio
- Ability to create fire separation between occupied areas
- Relatively low installed cost by volume
- Relatively quick and reliable fabrication process with consistency across markets
- Relatively quick installation and skill required for erection can be taught relatively easily
- Speed and reliability on concrete strength gain (form stripping, post-tension stressing)

WHAT CAN STRUCTURAL ENGINEERS DO?

Measure Twice ...

CURRENT STRATEGIES

Structural Framing Tradeoffs

Steel & Concrete

Total GWP (kg CO₂e/m²)

Hybrid (Steel + Timber)

Total GWP (kg CO₂e/m²)

Timber

Total GWP (kg CO₂e/m²)

Steel

Total GWP (kg CO₂e/m²)

308.3 19.6 12.1 Steel frame & Slimflor

Concrete

Steel & Composite

Total GWP (kg CO₂e/m²)

Steel & Composite

Total GWP (kg CO₂e/m²)

Concrete Total GWP (kg CO₂e/m²)

Ready-mix concrete CAO

RC frame & Flat slab

20.5

337.3

not recycled binder

Total GWP (kg CO₂e/m²)

MATERIALS AND SUPPLIER

Cement Replacement

FLY ASH / METAKAOLIN / SILICA FUME / FLY ASH / SLAG / CALCINE SHALE

	52%	40%	5%		_
	3 KSI	4 KSI	5 KSI	6 KSI	
0% FA	264	326	523	551	
20% FA	227	279	446	470	15%
30% FA	207	254	405	426	23%
30% SL	204	251	399	420	24%
50% SL/FA	164	200	316	332♥	40%

UNITS IN kgCO2E / CY

Supplier knowledge of mix performance is imperative to assignment of cement replacement:

- Strength Gain
- Workability
- Admixtures

WHAT'S NEXT?

CARBON NEGATIVE MATERIALS

Heidelberg Cement Plant with CCS – Brevik, Norway

- ~3.3 GJ / ton of clinker (~35% production cost)
- Coal predominant fuel: ~120kg coal / ton of cement
- Circular economy: CCS → Carbon Cure tech

RE-CAPTURING CARBON

Tata Steel plant with CCS - Ijmuiden, Netherlands; eurometal.net

Article | Open Access | Published: 26 February 2019

Room temperature CO₂ reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces

D. Esrafilzadeh et al. Nature; DOI: 10.1038/s41467-019-08824-8

RMIT: A catalytic liquid metal alloy and CO₂, electrically charged → solid carbon at room temperature!

CARBON 'HEAVY' STEEL

15

Thornton Tomasetti

PEARLITIC STEEL

- LRFD principles could be applied structural applications
- Challenges: manufacturing, joining, cutting, fabrication → cost increase

 $Fe_2O_3 + 2 \ Al \longrightarrow 2 \ Fe + Al_2O_3$

IS IT WORTH IT?

Source: International Energy Agency / The Economist

Global energy-related CO₂ emissions, tons bn,

- Iron & steel industry global annual
 CO₂ emissions:
 - ~2.3 bln tons
- Global annual steel production:
 - ~160 mln tons
- Total annual CO₂ captured in steel:
 - ~5 mln tons (0.2%)

(assuming all C comes from CO₂)

IS IT WORTH IT?

15kg of CO_2/m^3

Cubic meter of steel

240kg of CO_2/m^3 Increase only: (0.25% \rightarrow 0.83%): 167kg of CO₂ / m³ $0.83\% \times 7850$ kg = 65kg of C; 65x3.67 = 240kg

Oxygen

15.9994

12.011

THANK YOU

www.thorntontomasetti.com

